Semi-supervised Co-Clustering on Attributed Heterogeneous Information Networks
نویسندگان
چکیده
منابع مشابه
Semi-supervised Clustering in Attributed Heterogeneous Information Networks
A heterogeneous information network (HIN) is one whose nodes model objects of different types and whose links model objects’ relationships. In many applications, such as social networks and RDF-based knowledge bases, information can be modeled as HINs. To enrich its information content, objects (as represented by nodes) in an HIN are typically associated with additional attributes. We call such...
متن کاملSemi-supervised Clustering on Heterogeneous Information Networks
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...
متن کاملSemi-supervised information-maximization clustering
Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the information-maximization principle. The proposed method is an extension of a previous unsupervised information-maximization clustering algorithm based on squared-loss mutual information to effectively ...
متن کاملSEANO: Semi-supervised Embedding in Attributed Networks with Outliers
In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity and label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing & Management
سال: 2020
ISSN: 0306-4573
DOI: 10.1016/j.ipm.2020.102338